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Mach's Principle and Newtonian Mechanicst 

S O L O M O N  L. SCHWEBEL 

Boston College, Chestnut Hill, ]~fassacliusetts 

The union of Mach's principle and New:.onian mcchanlcs gives rise to Relational 
Mechanics. We find that the characteristics of the: revised mechanics are: (1) freedom 
from any reference to absolute space; (2) the identity of inertial and gravitational mass; 
(3) the relative acceleration of a body in a gravitational field dependent on the mass of 
the body. All these results are valid in the context of a Newtonian mechanics which is 
being developed in the oenter-of-mass system of all the particles. The conser~ation of 
linear momentum, energy,angular momentum are expressed in relational terms, i.e., no 
reference is made to absolute space, Relational Mechanics is a cla_~ical .relativistic theory 
which can be formulated to satisfy Einsteinian relativistic requirements. The Hamiltonian 
formalism for Relational Mechanics is discussed. 

1. Introduction 

Although the arguments in support o f  the relativity of  motion, and 
position of  a body are well known and widely accepted, Newton's laws of  
motion are still presented (classically and relativistically) with space as the 
referent for that motion and position. It  is our  purpose to remove the 
discrepancy between theory and practice by formulating the laws of motion 
so that Mach's  principle is satisfied. The thesis o f  that principle is that the 
position and motion of an object are discernible only in relation to other 
bodies. In essence, the principle substitutes physical objects for space as 
the physically meaningful referents for the description of  position and 
motion. 

We will carry out such a program for Newtonian mech~ a~r~ ?.nd establish 
a number of  results o f  value to classical and quantum mechanics. Among 
these hre: (1) A relational form for Newton's second law of  motion which 
eliminates any reference to absolute space. (2) Coordinate systems which 
are physically determined and for which the concept (~f inertia is clearly 
defined. (3) A Hamiltonian formalism, of  particular significance for 
quantum mechanics, expressed in terms of  re!ative coordinates and 
velocities. 

2. Relational Form for Newton's Second Law of  Motion 

For a number  of  reasons, it will be preferable to discuss Newton's laws 
o f  motion as they are applied to a system of  N particles which are in the 
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gravitational fields of each other. Certain results which will be obtained 
for this particular application are of interest in themselves and the procedure 
is easily generalized. 

l nan  obvious notation, in which the reference system is absolute space, 
we find Newton's equations for the N particles to be 

m, tl = Gin, ~ m,(r, - r,)/lr~ - r,I ~ (2.1) 
I t l |  

where both i and k run through the integers from I to N. The right-hand 
side of the equation is independent of the space frame of reference, but the 
left-hand side is not. If we multiply the equation with mj and subtract from 
the result the equation obtained by interchanging the subscripts i and j, 
we find 

m, mj(t,_tj)=Gm, mj{k~.m~(r,-r,) ~ '  m~(~- r~)/ 
Ir,-r, |  3 ~ -Ir,-r~l'] (2.2) 

Summing equation (2.1) over all the particles, we obtain 

,~ mr ~, = 0 ( 2 . 3 )  
l 

which yields the well-known Law of the Conservation of Linear Momentum. 
Equations (2.2) and (2.3) are mathematically equivalent to the original 

set of equation (2.1). However, equation (2.2) is expressed in terms of 
relative displacements and accelerations, and is, therefore, independent of 
the choice of coordinate system or frame of reference. Equation (2.3), on 
the other hand, depends on quantities which require the reference frame of 
absolute space. Such relations are physically unverifiable and must be 
eliminated from the theory, or else replaced by a relation which is in- 
dependent of.absolute space. For the moment, we will dispense with 
equation (2.3) and proceed with the development of the theory based 
solely on equation (2.2). The results which will be obtained will also be 
consequences of Newton's original formuIation, but we will be unable to 
reverse our steps and regain equation (2.1). The best that we could achieve 
would be equation (2.2). 

The symmetry of equation (2.2) reflects the independence ofthequantities 
of the frame of reference and the mutual dependence of the particles (bodies) 
involved. These characteristics are just those required by Mach's principle. 
Hence~ when equation (2.2), or an equivalent form which We will develop 
below, is taken as the starting point for the development of mechanics, we 
can be sure that Mach's principle has been imbedded from the start into 
the theory. 

Let us sum equation (2.2) over all thejth particles. We find 

m,{e,-(2mjedM)}=am, ~ ,nl(r~-r,) f l r , -r ,p;  M=ym, (2.4) 
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or with a slight rearrangement 

l = ore, ~ Ir~ - r l i  3 , 

(2.5) 
M(i)- -  ~ m,, ~" rn,*j = ~ mj*j 

J,~! J# l  

Comparison of  equation (2.4) with equation @i I) reveals that except for 
the reference frame both sets of  equations are identical. In Newton's 
equation (2.1), the acceleration of the ith particle, t,, is absolute, whereas 
in equation (2.4) the corresponding acceleration is relative to that of all the 
particles in the system. Note that in this formulation, ~ mjtj/M is the 
same for all the particles, i.e., for arbitrary ith particle. 

Equation (2.5) is a reformulation of equation (2.4) which displays 
explicitly the acceleration of the ith particle relative to the remaining 
particles in the system. Note that each particle has a different background 
for the description of its motion. However, equation (2.5) exhibits clearly 
the dependence of the acceleration of a particle on its mass. In equation 
(2.4), ff we were to divide through with rnt, we would not have completely 
eliminated raj fromthese equations since it occurs in the term ~ rajtJM. 
Just how the equation ~ of  motion depends on ra, is best exhibited by 
equation (2.5). In Conventional terminology,~ we would describe this 
equation as a center-of-mass description of the interaction between the 
lth particle and all the remaining particles of the system. Equation (2.5) 
yields the result that the acceleration of a particle relative to that of the 
center-of-mass of the remaining particles depends on the mass of that 
particle. 

The last statement would seem to contradict tl',e oft-stated result that is 
usually given in Newtonian mechanics. Namely, the acceleration of a body 
in a gravitational field is independent of the mass of that body. However, 
the equations which led us to this seemingly contradictory result is a valid 
deduction from Newton's equations of motion. The resolution of this 
apparent paradox is to be found in noting that the claim of the independence 
of the gravitational acceleration on the mass of the body accelerated is 
based on Newton's equations of motion which describe the motion in 
absolute space. Indeed, equation (2.1) yields just this result. However, if 
we refer the motion to the bodies themselves, which is the situation 
represented by equation (2.4) or (2.5), then we find that the relative accelera- 
tion depends on the mass of the particle accelerated. 

We can see this explicitly by considering a system of two particles only, 
I andj. From equation (2.4) or (2.5), we obtain 

(ra, m j / m ,  + m j ) ( t ,  - * j )  = G m ~ m j ( r j  - r , ) / l r j  - r , I  ~ 
o r  

e ,  - -  * j  -= G(m, + m j )  ( r j  - -  r , ) / I r j  - r , I  ) (2.6) 
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We may identify the i-j particles with the sun-earth, moon-earth, or 
terrestrial object-earth system. In any case, equation (2.6) is the well- 
known equation for such systems and it clearly states the dependence of 
the relative acceleration on the masses of the component parts. Thus, even 
in the context of Newtonian mechanics, there is no paradox. However, from 
an observational point of view, we must reject the implications based on 
absolute space and replace them with those which are founded on the 
relational aspect of  position and motion. Such a viewpoint is given by 
equation (2.4) or (2.5) in which the fiducial system is either the entire system 
or else the system without the particular object, whose motion is being 
described. It is this set of equations which is supported by experimental 
data (Goldstein, 1950). Henceforth, we will refer to equation (2.4) or (2.5) 
as the relational form for Newton's equation of motion. What we have 
so far established will be shown to hold in general for arbitrary force fields. 

3. Physically Determined Coordinate Systems 

Equation (2.2), as we have pointed out, is independent of the choice of 
coordinate system. The same can be said of the relational equations (2.4) 
and (2.5) which are derived from equation (2.2). But among these coordinate 
systems are those whose origins are determined by the physical system 
itself. In equation (2.4), for example, the center-of-mass of the physical 
system can be chosen as the origin of a particular coordinate system. For 
this choice, our equations reduce to the classical form for Newton's 
equations of  motion. Another physically determined set of coordinates 
arises from equation (2.5) when the origin of a coordinate system is taken 
to be the center-of-mass of all the particles but one--the one excluded is 
the particle whose behavior is under investigation. 

Were it not for the weakness of the gravitational field, the choice of 
physically determined coordinate systems would be severely restricted. 
We would, at all times, have to take into account all the particles in the 
universe. But a wider choice is possible, since, from an observational 
view-point, we cannot detect, in general, the effects of gravitation on most 
of the phenomenal we observe. 

To explore these statements mathematically, let us return to equation 
(2.4). If  we sum over all the particles in the system, we find that 

~. m,{l I - (~  m~%/M)} = 0 0.1) 
l 

This result is a mathematical identity. Yet it is the relational equivalent 
to equation (2.3) and states that the sum of the relative moments of all the 
particles is a constant. Equation O. !) is the relational Law of  the Consert'a- 
tion of  Linear Momentum. 

Let us assume, that of all the gravitational interactions which appear on 
the right-hand side of equation (2.4), only the nearest neighbors of the 
ith particle contribute significantly to the interaction. Summing over the 
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nearest neighbors in equation (2.4), we get 

, , , , * , IM(.)  - t , I M  = 0 
i i  

where M(n) is the total mass of the nearest neighbors. Thus, to a good 
approximation, we can replace the origin of the coordinate system which 
is the center-of-mass of all the particles in the universe with the origin 
whose center-of-mass is that of the nearest neighbors. 

The weakness of the gravitational interaction is the reason that classical 
Newtonian mechanics gives such excellent results. It matters very little 
whether we use the terrestrial laboratory or the stars as the frame of 
reference. The difference is much too small to be observable. As an example, 
let us consider the inertial reference frames used in the Special Theory of 
Relativity. If these coordinate systems are purely mathematical, by which 
is meant that they are not physical structures, then they are special versions 
of absolute space. If they are massive, then because of the weakness of the 
gravitational interaction, they are for all practical purposes equivalent 
systems of reference in the "relativistic" sense. But, in theory, if the reference 
frames are physical structures, then they cannot be equivalent reference 
frames, since each of the frames are in different gravitational environments. 

We conclude that, in practice, there are to a good approximation equiv- 
alent reference frames but that, in theory, we can only have equivalent 
reference frames in the absence of gravitation. 

It would appear that the weakness of the gravitational interaction would 
make it difficult to distinguish Relational Mechanics from Newtonian 
mechanics. But, as the gravitational field approaches zero, there are traces 
of Relational Mechanics which are left and cannot be erased from the 
Newtonian mechanics which emerges in the limit. One such notion is that 
of inertia. In Newtonian mechanics, it is meaningful to discuss a universe 
which consists of one particle in motion. Based on that motion, which is 
relative to absolute space, we can define the inertia of that particle. However, 
Relational Mechanics, even in the limit of vanishing gravitational inter- 
action, requires that the universe consist of at least two particles and that 
motion of one particle is discernible only relative to the second particle. 
Since the gravitational interaction is the source for that motion, the inertia 
of a panicle is a function of the gravitational masses involved. Thus, in 
equation (2.5), the relative acceleration of the ith particle is multiplied by 
the relational inertia of that particle, m~ M(i)/M. All the masses involved 
are gravitational masses. In Relational Mechanics there is no distinction 
between inertial and gravitational masses. In Newtonian mechanics, 
where the sources for inertial mass and gravitational mass are claimed to 
be distinct, it is a legitimate question to ask: Why are the two masses equal 
to each other? No such problem arises in Relational Mechanics. 

Accepting the relational interpretation, we can readily-establish the 
connection between relational inertia and Newtonian inertia. In equation 
(2.5), if M(i)~ m~, then in practice the Newtonian value for inertia would 
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be the same as its relational value. However, as equation (2.6) illustrates 
if masses comparable in magnitude are involved, then the relational inertia 
can differ marked!y from the Newtonian. In fact, the relational value is 
what classical Newtonian mechanics would label the reduced mass of 
the system. 

We have seen that Relational Mechanics does not distinguish between 
inertial and gravitational mass. In Relational Mechanics, the acceleration 
of  a body in a gravitational field depends on the mass of that body. Also, 

w e  established Relational Mechanics as a union between Newtonian 
mechanics and Mach's principle so that all our conclusions are necessarily 
that part of  Newtonian mechanics which does not rely on an absolute 
frame of reference. Because of the fundamental nature of mechanics, the 
changes that constitute ~liat we have called Relational Mechanics will 
permeate much of physics. We turn, now, to a limited discussion of some 
of  the areas which will be affected. 

4. Hamihonian Formalism 

We have been discussing Newton's equations of motion and equations 
(2.4) and (2.5) for the gravitational interactions. We will generalize these 
equations and indicate how to develop a Hamiltonian formulation which 
can be used to couple Relationa! Mechanics to the various other branches 
of  physics. We will not explore the consequences of the relational approach 
for quantum mechanics, electromagnetic theory, etc., but  will leave that 
material for additionalpublications. 

Let us start with Newton's equations of motion in their most general 
form. 

m~0,= Y. Fa;  F a = - F j a  (4.1) 

Proceeding as before, we develop the sequence of  equations, 

m, mgf,-f j)--m.i  Y Fn~-m, ,~ Fj, (4.2) 
l + !  t+$ 

which are generalizations of  the equations derived earlier, equations (2.2), 
~4~ and (2.s). 

.As is evident, the statements made about the gravitational field, inertia, 
coordinate systems, etc., can be taken over verbatim. They are valid in 
this most general form. 

Equation (4.2), on scalar multiplication with #j -# j .  and summed over 
all the particles, becomes 

-- ~._ Fo" (vt  - v j )  (4.4) 
J+| 
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The te~m in brackets is twice the kinetic energy expressed in terms of 
reIative velocities. The repeated summation accounts for the fact that we 
obtain double the kinetic energy. 

The right-hand side of equation (4.4) for conservative fields, i.e., those 
for which we can ~ t e  

Fu -= - V u  V,j(lr, - r+l) 
reduces  to 

V,,(lr, - rsl) (4.5) 
I J+l i J+i 

anddetermines the potential energy in term.s of  relative coordinates. 
Equations (4.4) and (4.5) give us the Law for the Conservation of Energy 

expressed in totally relational terms: 

d [x-" m, m s . "" 1 
- n 2 . , - ~ - t v , - , s r +  ~ Vo(Ir ,-r jI)  = 0  (4.6) 
It~P[i../ J I J+ l  

where the term in brackets is equal to twice the total energy. 
Having established the relational counterparts to Newtonian kinetic and 

potential energies, we can develop the relational Lagrangian and Hamil- 
tonian formalisms along lines almost identical to the well-known classical 
derivations. There is no need to review those procedures. 

But a comment is in order here with regards to the variables which occur. 
The displacement vector r~ and the velocity vectors vt must be considered 
the independent variables, since the origin of the coordinate system itself 
is arbitrary. One may be tempted to introduce relative coordinate variables, 
i.e., r~j -- r~ - r s which, ofcourse, could be done, but it leads to complications 
because there would exist relations among them, for example, r+j + rst = r+t. 

To complete the relational description of mechanics, we present the 
relational form for angular momentum. Take the cross-product of equation 
(4.2) with r~ - r s and sum over all the pairs of particles. We find 

d f ' ~  m, m s . . )] 
+ 1 2 ,  t r ,  - r,, • ( , , - , ,  = (r ,  - r,) x F,, (4.7) 

LI.j J I . J+ l  

In words, the result states that the rate of  change of  the total angular 
momentum is equal to the total torque impressed. Conservation of angular 
momentum follows for those situations, for example, conservative fields, 
for which the right-hand side vanishes. The relational equation is so similar 
to its Newtonian analog that no additional comment seems necessary. 
Nonetheless, the result appears less mysterious if it is noted that 

x m+m~. 

So again, the classical Newtonian relation appears with the displacement 
vector and velocity vector of each particle given with reference to the 
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center-of-mass of the universe, or, in physical terms, the position and 
velocity of each particle is relative to all the particles in the universe. 

Discussion 

Relational Mechanics is an aspect of Newtonian mechanics which is free 
from certain of its defects. The notion of absolute space which was a basic 
source of the dissatisfaction with Newtonian mechanics does not appear 
in Relational Mechanics. Where Newtonian mechanics requires that 
inertial mass and gravitational mass be considered distinct concepts, 
Relational Mechanics does not. Where the gravitational field in Newtonian 
mechanics is characterized as imparting an absolute acceleration to a body 
independently of the mass of that body, Relational Mechanics denies the 
verifiability of such an absolute acceleration and demonstrates that a 
gravitational field imparts a relative acceleration to a body that does 
depend upon the mass of the body. For example, Kepler's problem for two 
such bodies has for its solution the relative displacements, velocities, etc., 
as the observables for the two-body problem. 

Relational Mechanics does provide preferred frames of reference. This 
raises the question of whether or not an Einsteinian relativistic formulation 
of  Relation Mechanics is possible. The answer is yes. Relational Mechanics 
is without doubt a classical relativistic theory. However, it fails to include 
a proper treatment of the relativistic concept of time. But this aspect of 
the theory can be, and, in fact, has been, developed. The procedure of 
E. A. Milne (Milne, 1948) answers the problem admirably. Its application 
to the present theory will be the content of another report. 

References 
Goldstr H. (1950). Classical ,~echanics. Addison-Wesley Press, Inc., Cambridge, 

Mass. Chap. 3, p. 80. 
Milne, E. A. (1948). Kinematic Relativity. Oxford University Press, London. 


